Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria.

نویسندگان

  • Raúl Osvaldo Pedraza
  • Alberto Ramírez-Mata
  • Ma Luisa Xiqui
  • Beatriz Eugenia Baca
چکیده

In this work, we report the detection of aromatic amino acid aminotransferase (AAT) activity from cell-free crude extracts of nine strains of N(2)-fixing bacteria from three genera. Using tyrosine as substrate, AAT activity ranged in specific activity from 0.084 to 0.404 micromol min(-1)mg(-1). When analyzed under non-denaturating PAGE conditions; and using tryptophan, phenylalanine, tyrosine, and histidine as substrates Pseudomonas stutzeri A15 showed three isoforms with molecular mass of 46, 68 and 86 kDa, respectively; Azospirillum strains displayed two isoforms which molecular mass ranged from 44 to 66 kDa and Gluconacetobacter strains revealed one enzyme, which molecular mass was estimated to be much more higher than those of Azospirillum and P. stutzeri strains. After SDS-PAGE, some AAT activity was lost, indicating a differential stability of proteins. All the strains tested produced IAA, especially with tryptophan as precursor. Azospirillum strains produced the highest concentrations of IAA (16.5-38 microg IAA/mg protein), whereas Gluconacetobacter and P. stutzeri strains produced lower concentrations of IAA ranging from 1 to 2.9 microg/mg protein in culture medium supplemented with tryptophan. The IAA production may enable bacteria promote a growth-promoting effect in plants, in addition to their nitrogen fixing ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5.

The plant growth-promoting rhizobacterium Enterobacter cloacae UW5 synthesizes the plant growth hormone indole-3-acetic acid (IAA) via the indole-3-pyruvate pathway utilizing the enzyme indole-3-pyruvate decarboxylase that is encoded by ipdC. In this bacterium, ipdC expression and IAA production occur in stationary phase and are induced by an exogenous source of tryptophan, conditions that are ...

متن کامل

Bioproduction of Indole Acetic Acid by Rhizobium Strains Isolated from Root Nodules of Green Manure Crop, Sesbania sesban (L.) Merr.

Twenty six Rhizobium strains were isolated from root nodules of Sesbania sesban (L.) Merr. collected from different regions of Andhra Pradesh. All the 26 Rhizobium strains produced indole acetic acid (IAA), but maximum amount was produced by only five strains in yeast extract mannitol  (YEM) medium supplemented with L-tryptophan. The strains were found to elaborate maximum IAA when fed with 2.5...

متن کامل

Isolation and characterization of plant growth-promoting bacteria from Syrian bean caper (Zygophyllum fabago) rhizosphere

Some rhizobacteria have positive effects on plants growth. Syrian bean-caper (Zygophyllum fabago) is a weed plant with medicinal value. This study was conducted to isolate and identify bacteria from Syrian bean-caper rhizosphere. Characteristics associated with plant growth stimulation, such as phosphate and zinc dissolution, production of Indole acetic acid and antifungal activity, were invest...

متن کامل

Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.

Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fi...

متن کامل

Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN]

The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 233 1  شماره 

صفحات  -

تاریخ انتشار 2004